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ABSTRACT: 

In recent years, the growth of the economy has led to the increasing exploitation of water 

resources and groundwater. Due to heavy abstraction of groundwater its importance 

increases, with the requirements at present as well as in future. Accurate estimates of 

groundwater level have a valuable effect in improving decision support systems of 

groundwater resources exploitation. This paper investigates the ability of a hybrid model of 

artificial neural network (ANN) and genetic algorithm (GA) in predicting groundwater levels 

in an observation well from Udupi district. The ground water level for a period of ten years 

and rainfall data for the same period is used to train the model. A standard feed forward 

network is utilized for performing the prediction task. A groundwater level forecasting model 

is developed using artificial neural network. The Genetic Algorithm is used to determine the 

optimized weights for ANN. This study indicates that the ANN-GA model can be used 

successfully to predict groundwater levels of observation well. In addition, a comparative 

study indicates that the ANN-GA hybrid model performs better than the traditional ANN 

back-propagation approach. 

 

 
1.INTRODUCTION  

1.1. RESEARCH BACKGROUND 
Groundwater resources, as one of the most 

valuable and important sources of water in 

the world, play a direct and crucial role in 

various aspects of human lives, such as 

agriculture, industrial development, and 

potable water supply [1,2]. In addition, the 

indirect effects of groundwater resources 

on the environment and communities are 

undeniable. The groundwater level (GWL) 

is a direct and simple measure of 

groundwater availability and accessibility. 

Having a proper understanding of the past, 

current, and future situations of GWL can 

provide policy-makers and practitioners in 

water sectors with better insight and 

perception to develop strategies for the 

planning and management of water 

resources, to ensure sustainable 

socioeconomic development [2]. However, 

GWL consists of an integrated response to 

several climatic, topographic, and 

hydrogeological factors and their 

interactions, which makes the simulation 

of GWL a challenging task [3,4]. 

Numerous studies using different 

simulation approaches have been 

conducted for the quantitative and 

qualitative prediction of GWL. These 

methods cover a wide range of physically 

based  
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conceptual models, experimental models 

[5–7], and numerical models. Modeling 

groundwater using numerical models 

consists of several approaches, such as 

finite difference [8], finite volume [9], 

finite element [10], and element-free [11] 

methods. Even though these classical 

models are robust and reliable, the 

precision and accuracy of numerical 

models are confined by several factors, 

such as their high dependency on large 

volumes of data related to aquifer 

properties, the geology of the porous 

media, and basement topography [12]. 

Moreover, properly demarcating domain 

boundaries, defining an efficient grid size 

for solving the associated differential 

equations, and calibrating/validating the 

executed model have made numerical 

modeling a complex and sophisticated 

task. In last two decades, artificial 

intelligence (AI) models have been widely 

used to overcome the drawbacks of 

conventional numerical models for GWL 

simulation. Fig. 1 presents the goal map, 

depicting the two major pieces of 

information, one being the most studied 

geographical locations and other those 

which have not yet been 

 
studied. Furthermore, Fig. 1 highlights the 

four major countries which have done 

extensive GWL modeling-related studies, 

whereas the black color zone reveals the 

areas where the application of AI has not 

yet gained in popularity. Around 70% of 

areas have not yet used GWL, as many do 

not need GW-related studies, due to a 

sufficient amount of surface water or less 

habitants, such as in polar areas, Russia, 

and so on. Moreover, some 

underdeveloped countries, such as Africa, 

and some parts of Asia and North America, 

may not have explored AI techniques yet. 

As per Fig. 2, there has been a significant 

increase in studies in this field in the last 

few years; however, more studies should 

be done, based on different geographical 

locations, to test the efficiency of the 

proposed models. The usability and 

reliability of AI models in dealing with 

complex and high-dimensional 

engineering problems have been proven in 

the last few decades [13–15]. AI consists 

of multidimensional systems combining 

various mathematical and statistical 

components and arithmetic and heuristic 

algorithms. AI has been extensively 

employed in different fields of science, 

engineering design, energy, robotics, and 

economics . It has also been intensively 

used for solving various civil and 

environmental engineering problems. 

Some examples include soft computing 

techniques, Machine Learning (ML) 

methods, probabilistic analysis, and 

Fuzzy-based systems. In recent years, 

more attention has been paid to the 

successful use of AI in different 

hydrological fields, including water 

resources, surface and groundwater 

hydrology, sediment contamination, and 

hydraulics. 

1.2. Research significance Proper 

measurement, nowcasting, and forecasting 

of GWL in aquifers are highly important 

for the sensible management of 

groundwater resources. Monitoring GWL 

can provide hydrologists and 

hydrogeologists valuable information to 

understand the short- and long-term 

variations in groundwater availability. The 

ability of AI models to simulate and 

predict GWL without requiring deep and 

comprehensive knowledge of the 

underlying topographical and hydro-
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geophysical parameters makes them 

appealing methods compared to physically 

based and numerical methods 

 
A large volume of studies have already 

investigated and reported the applicability 

of AI in modeling GWL over the last two 

decades. Most of the early works included 

simple and standard AI methods, such as 

perceptron Artificial Neural Networks 

(ANNs). However, in the last decade, the 

application of a variety of ML models for 

GWL simulation has been witnessed; 

examples include different types of ANNs, 

fuzzy-based models, Support Vector 

Machines (SVMs), tree-based models, 

Genetic Programming (GP), and Gene 

Expression Programming (GEP) models. 

Most recently, along with the application 

of novel AI models, including Deep 

Learning (DL), Extreme Learning 

Machine (ELM), and Long Short-Term 

Memory (LSTM) , novel strategies, such 

as integrated and hybrid AI models , 

ensemble learning, and AI-GIS (Artificial 

Intelligence-Geographic Information 

System)-based models, have been 

implemented for modeling GWL. Rajaee 

et al., for instance, studied 67 journal 

papers and provided a bibliographic 

review of the applications of AI in GWL 

simulation and forecasting. Considering 

the outcomes of different classic AI 

methods, such as ANNs, Adaptive 

Neurofuzzy Inference System (ANFIS), 

SVM, GP, and hybrid AI methods, the 

study concluded that AI methods can be 

successfully used to model and forecast 

GWL in aquifers located in regions with 

different geology and climate. Some 

studies have attempted to combine the 

advantages of AI and numerical methods 

to develop hybrid models. For example, 

Nourani and Mousavi introduced a hybrid 

AI-meshless model for modeling GWL. 

They used AI methods, such as ANN and 

ANFIS, for temporal modeling of GWL, 

while the meshless method was used for 

solving the governing differential 

equations to estimate the GWL in places 

with no observations . Chen et al.  carried 

out a comparative study using a finite 

difference numerical model versus three 

ML models, including ANNs and SVM, 

for simulating GWL. Comparing the 

general performance of the two distinct 

approaches revealed that the ML models 

acted better than the numerical model. 

Nevertheless, they also mentioned the 

superiority of the finite difference method, 

due to its generalization ability in 

including the physical mechanism of the 

aquifer. 

ALGORITHMS Artificial neural 

networks Artificial neural networks 

estimation approach has received 

tremendous attentions in the last few 

decades. An interesting property of ANNs 

is that they often work well even when the 

training data sets contain noises and 

measurement errors (Hammerstrom, 

1993). Moreover, they have the capability 

of representing complex behaviors of 

nonlinear systems (Maier and Dandy, 

2000). The advantage of the ANN is that 

with no prior knowledge of the actual 

physical process and, hence, the exact 

relationship between sets of input and 

output data, if acknowledged to exist, the 

network can be trained to learn such a 

relationship. The ability to train and learn 

the output from a given input makes ANN 

capable of describing large scale arbitrarily 

complex non-linear problems. A neural 

network is characterized by its architecture 

that represents the pattern of connection 

between nodes, its method of determining 

the connection weights, and the activation 
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function (Fausett, 1994). A typical ANN 

consists of a number of nodes that are 

organized according to a particular 

arrangement. Feed forward neural network 

models One way of characterizing ANNs 

is based on the direction of information 

flowing and processing, as feed-forward 

(where the information flows through the 

nodes from the input to the output side) 

and recurrent (where the information flows 

through the nodes in both directions). 

Among these combinations, the multi-

layer feedforward networks, also known as 

multi-layer perceptron (MLPs), trained 

with a back-propagation learning 

algorithm have been found to provide the 

best performance with regard to input-

output function approximation, such as 

forecasting applications. A typical MLP 

with one hidden layer is shown in Figure 

1; (a). The first Layer connects with the 

input variables and is called the input 

layer. The last layer connects to the output 

variables and is called the output layer. 

The layer between the input and output 

layers, is called the hidden layer (there 

may be more than one hidden layer in an 

MLP).The processing elements in each 

layer are called nodes or units. Each node 

is connected to the nodes of neighboring 

layers. The parameters associated with 

each of these connections are called 

weights. The architecture of a typical node 

(in the hidden or output layer) is also 

shown in Figure 1; (b) Each node j 

receives incoming signals from every node 

i in the previous layer. Associated with 

each incoming signal xi is a weight wji. 

The effective incoming signal sj to node j 

is the weighted sum of all the incoming 

signals, is passed through the effective 

incoming signal, sj non-linear activation 

function (sometimes called a Transfer 

function or threshold function) to produce 

the outgoing signal yj of the node. j j s f s 

1 exp 1 ( ) The most commonly used 

function in an MLP trained with 

backpropagation algorithm is the sigmoid 

function. The sigmoid function most often 

used for ANNs is the logistic function 

(Sivakumar et al., 2002): n i S j wji xi 0 (2) 

Recurrent neural network models The 

recurrent neural network (RNN) is another 

multi-layer architecture that has been used 

for a variety of applications including 

control systems and forecasting of 

dynamic processes. In this section RNN 

structure is briefly discussed. The RNN 

architecture, a variation of general feed-

forward backpropagation (FFBP) 

architecture, is used to capture dynamic 

and highly nonlinear systems by including 

a feedback mechanism in the architecture. 

The general RNN architecture uses 

specialized hidden nodes to introduce 

feedback to the network. In such a 

network, the output of these specialized 

nodes is provided as input to others. Once 

such feedback connections are allowed, the 

network topology becomes more 

connected since any node can be 

connected to any other node, including to 

itself. These self-connected or 

selfrecurrent feedback nodes form the 

"context" layer of a network and are 

tagged on to the network structure along 

with the usual nonfeedback nodes. The 

"context" layer is used to retain 

information between training iterations and 

serve as memory of the system by 

retaining the state of the network before 

the next set of data is processed. Each time 

a pattern is presented, each context node 

computes its activation just as in a feed 

forward network. However, its output is 

now able to reflect the state of the network 

before the pattern is seen. When 

subsequent patterns are presented, the 

hidden and output units’ states will be a 

function of everything the network has 

seen so far. Thus, at each time period, 

activation propagates only forward through 

one layer of connections. Once some level 

of activation is present in the network, it 

will continue to flow through all the 

remaining hidden layers, even in the 

absence of any new input whatsoever. 

However, this added feedback mechanism 

(memory function) requires additional 

network connections, a large amount of 
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storage and computation, and a larger 

training set in order for the RNN to work 

well. This invariably leads to difficult 

network training and slow convergence 

(Atya and Parlos, 2000). Training 

methodology in RNN The method of RNN 

training is similar to that of feed forward 

network models. The training algorithm is 

explained with the help of a simple 

example. A small network which has two 

input neurons, one hidden layer having 

three neurons and one output neuron is 

shown in Figure 2. In addition, a neuron 

taking input from the output layer and 

connected to the hidden layer is added as 

shown. This neuron is the additional 

neuron in RNN. 

 
 

 

Genetic algorithm GA optimizes using a 

search process that emulates natural 

evolution. On the other hand GA is a 

global heuristic, stochastic, optimization 

technique based on evolution theory and 

genetic principles developed by (Holland, 

1975). Goldberg and Michalewicz (1992) 

discussed the mechanism and robustness 

of GA in solving nonlinear optimization 

problems (Goldberg, 1989; Michalewicz, 

1992). The algorithm begins with a 

randomly generated population which is 

consisting of chromosomes, and applies 

three kinds of genetic operators: The 

selection, crossover and mutation 

operators to find the optimal solutions. The 

selection operator chooses chromosomes 

from the current population based on 

fitness value of the individuals. The 

crossover operator combines the features 

of two parent chromosomes to form two 

similar offspring by swapping 

corresponding segments of the parents 

(Goldberg, 1989). The mutation operator 

creates new chromosomes by randomly 

changing the genes of existing 

chromosomes. GA can explore the entire 

design space by the genetic manipulations; 

it does not easily fall into a certain local 

minima or maxima. As this occurs, the GA 

converges to increasingly better solutions. 

Improvements in fitness, however, 

diminish as the population diversity 

decreases and the population converges 

toward a good solution. Stopping criteria 

such as ―100 generations without 

improvement‖ and minimum population 

diversity are often used to terminate the 

algorithm when improvements are 

sufficiently small and infrequent. These 

concepts are well described in (Davis, 

1991; Goldberg, 1989). Therefore, GA is 

an aggressive search technique that 

quickly converges to find the optimal 

solution in a large solution domain. ANN-

GA model scheme In this research, a 

multi-layered feed-forward neural network 

(FFN) and recurrent neural network 

(RNN) with a back propagation algorithm 

are adopted. Although the back 

propagation algorithm is successful, it has 

some disadvantages. The algorithm is not 

guaranteed to find global minimum of 

error space and the convergence tends to 

be extremely slow. In addition, the 

selection of the learning factor and inertial 

factor affects the convergence of the BP 
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neural network which is usually 

determined by experience. In present 

research, the number of neurons in the 

hidden layer is determined using the 

genetic algorithm. The number of hidden 

layers and the number of nodes in each 

layer depends on the complexity of the 

patterns and the nature of the problem to 

be solved. The use of a single hidden layer 

is sufficient to approximate to any 

continuous function as closely as requested 

(Funahashi, 1989; Hornik et al., 1990) and 

studies also showed that having more than 

two layers may not result in significant 

performance improvements (Patuwo et al., 

1993) Thus, in our study, a two-layer ANN 

is utilized (Figure 1). The number of 

neurons in the input and output layers are 

given by the number of input and output 

variables of network. The number of 

neurons in hidden layer is obtained by GA. 

In this study, an ANN with one hidden 

layer is employed. The number of neurons 

in this layer is determined by GA. The 

optimization process flow chart of the 

ANN-GA model is shown in Figure 3. The 

sigmoid function was used in each node of 

the hidden layer and output layer as the 

transfer function. Number of neurons in 

hidden layer is the only information that is 

coded in a chromosome in GA. After that, 

the GA is run and in its fitness assignment 

past, an ANN which the number of its 

hidden layer neuron is determined by 

coded chromosome is trained via ANN. 

Then the MSE of this trained ANN is set 

as the fitness values. The GA will generate 

many of individual values which they will 

be set to MSE. This process is depicted in 

Figure 3. Simulation setup Study area and 

data set The area which studied in this 

research is the Kerman plain aquifer which 

is a part of Kerman province located in the 

south-eastern of Iran as shown in Figure 4. 

In this plain, no permanent river exists; 

therefore, the supply of water demands in 

agriculture, industry, Jalalkamali and 

Jalalkamali 5779 Figure 4. The location of 

wells in Kerman plain. Figure 5. Time 

series plot for the rainfall versus month. 

domestic and municipal sectors in 3200 

km2 area around this plain highly depends 

on groundwater. In the past two decades, 

frequent hydrologic droughts besides the 

increasing number of pumping wells have 

caused a decline rate of 1 to 3 m annually. 

As a consequent the groundwater quality 

has decreased as well. The long-term 

annual precipitation for the area has 

noticeably decreased from 150 to 100 

(mm/year) during the 20 past years (1988 

to 2009). The data acquired from the area 

consists of rainfall depth, temperature and 

depth of the wells time series measured at 

Kerman airport station (latitude 30o , 16' 

N, longitude: 56o , 54’ E). The data set 

was provided by Iranian Ministry of 

Energy (IMOE). The time series used in 

this research are summarized for a 22 year 

period (1988 to 2009). Figure 5 presents, 

the monthly precipitation at meteorological 

Kerman airport station. In this region most 

of annual rainfall occurred during the 

winter season. Because 5780 Afr. J. Agric. 

Res. Figure.6. Time series plot for the 

temperature versus month Figure 6. Time 

series plot for the temperature versus 

month. Table 1. The monthly statistical 

parameters of data. Data set Unit Xmean 

Sx Csx Xmax Xmin HNO.26 m -33.36 

1.74 0.63 -28.82 -35.93 HNO.16 m -37.71 

4.3 -0.39 -30.35 -45.49 HNO.41 m -34.57 

3.72 0.43 -26.11 -40.53 R mm 11.26 17.39 

2.3 109.1 0 T c o 15.82 7.68 0.03 29.25 

1.05 of relatively high temperature of this 

province, temperature plays an important 

role in the water budget. Figure 6 shows 

the monthly temperature for the period 

mentioned. The data sample consisted of 

22 years (1988 to 2009) of monthly 

records of air temperature (T), rainfall (R) 

and water levels in target well (H NO.26) 

and neighboring wells (H NO.16 and H 

NO.41). The first 19 years (1988 to 2006) 

data were used to train the models and the 

remaining data for testing. The monthly 

statistics of each time series are given in 

Table 1. In the table the Xmean, Sx, Csx, 

Xmax and Xmin respectively denote the 

mean, standard deviation, skewness 
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coefficient, maximum and minimum of 

observations. Parameter setup Population 

size and generation numbers are set to 100. 

The tournament selection is used as 

selection method in GA, two point 

crossover and an uniform mutation are 

consider for reproduction Crossover rate 

and mutation probability are set to 0.7 and 

0.01 respectively. Learning rate in BP 

algorithm is set to 0.02 and 50 epochs are 

considered for training the ANN. 

CONCLUSIONS: 

 With climate change and overexploitation 

situations, groundwater table fluctuations’ 

accurate predictions are essential for 

managing groundwater resources. The 

present study aimed to investigate the 

comparative potential of the hybrid GA-

ANN models against the traditional GA 

models to predict the seasonal 

groundwater table depth in the area 

between the Ganga and the Hindon rivers. 

The ability of developed models was 

evaluated by using the statistical indicators 

(coefficient of determination, coefficient of 

efficiency, correlation coefficient, mean 

absolute deviation, root mean square error, 

coefficient of variation of error residuals, 

absolute prediction error, and performance 

index), as well as through visual 

inspection. The analysis results 

demonstrate that the GA models 

recognized the groundwater table depth 

trend efficiently but failed to predict the 

groundwater table depth because the 

maximum coefficient of determination was 

only 0.47. Simultaneously, the GA-ANN 

models’ performance was found to be 

superior to the GA models for GWTD 

prediction in both the seasons, with the 

highest coefficient of determination values 

of 0.94 and 0.95, respectively. It was also 

concluded that the more significant 

number of input parameters enhanced the 

predictive rationality of applied GA-ANN 

models. Thus, the GA-ANN based models 

may be successfully functional in the field 

of groundwater to predict the groundwater 

table fluctuations with reasonably good 

accuracy. The efficient models found in 

this study confirm promising outcomes 

and proved to be reliable and time-saving 

technologies for optimal planning and 

management of groundwater resources in 

the study area. Our proposed model could 

be readily transferable or adapted to other 

areas, specifically those with similar 

hydrogeological conditions. The 

accessibility and quantity of data are 

challenging. In future research, the authors 

will project to establish a wireless sensor 

network for near real-time monitoring of 

groundwater levels and meteorological 

data in the study area. Author 
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